
Checking Array Bound Violation Using Segmentation Hardware

Lap-chung Lam Tzi-cker Chiueh
Computer Science Department

Stony Brook University
{lclam, chiueh}@cs.sunysb.edu

April 15, 2005

Abstract

The ability to check memory references against their associated array/buffer bounds helps program-
mers to detect programming errors involving address overruns early on and thus avoid many difficult
bugs down the line. This paper proposes a novel approach calledCashto the array bound checking
problem that exploits the segmentation feature in the virtual memory hardware of the X86 architecture.
TheCashapproach allocates a separate segment to each static array or dynamically allocated buffer, and
generates the instructions for array references in such a way that the segment limit check in X86’s virtual
memory protection mechanism performs the necessary array bound checking for free. In those cases that
hardware bound checking is not possible, it falls back to software bound checking. As a result,Cashdoes
not need to pay per-reference software checking overhead in most cases. However, theCashapproach
incurs a fixed set-up overhead for eachuseof an array, which may involve multiple array references.
The existence of this overhead requires compiler writers to judiciously apply the proposed technique to
minimize the performance cost of array bound checking. This paper presents the detailed design and
implementation of theCashcompiler, and a comprehensive evaluation of various performance tradeoffs
associated with the proposed array bound checking technique. For the set of complicated network appli-
cations we tested, including Apache, Sendmail, Bind, etc., the latency penalty ofCash’s bound checking
mechanism is between 2.5% to 9.8% when compared with the baseline case that does not perform any
bound checking.

1 Introduction

Checking memory references against the bounds of the data structures they belong to at run time provides
a valuable tool for early detection of programming errors that could have otherwise resulted in subtle bugs
or total application failures. In some cases, these software errors might lead to security holes that attackers
exploit to break into computer systems and cause substantial financial losses. For example, the buffer over-
flow attack, which accounts for more than 50% of the vulnerabilities reported in the CERT advisory over
the last decade [3,14,18], exploits the lack of array bound checking in the compiler and in the applications
themselves, and subverts the victim programs to transfer control to a dynamically injected code segment.
Although various solutions have been proposed to subjugate the buffer overflow attack, inoculating appli-
cation programs with strict array bound checking is considered the best defense against this attack. Despite
these benefits, in practice most applications developers still choose to shy away from array bound checking

because its performance overhead is considered too high to be acceptable [13]. This paper describes a novel
approach to the array bound checking problem that can reduce the array bound checking overhead to a frac-
tion of the input program’s original execution time, and thus make it practical to apply array bound checking
to real-world programs.

The general problem of bound checking requires comparing the target address of each memory ref-
erence against the bound of its associated data structure, which could be a statically allocated array, or a
dynamically allocated array or heap region. Accordingly, bound checking involves two subproblems: (1)
identifying a given memory reference’s associated data structure and thus its bound, and (2) comparing the
reference’s address with the bound and raising an exception if the bound is violated. The first subproblem
is complicated by the existence of pointer variables. As pointers are used in generating target memory ad-
dresses, it is necessary to carry with pointers the ID of the objects they point to, so that the associated bounds
could be used to perform bound checking. There are two general approaches to this subproblem. The first
approach, used in BCC [4], tags each pointer with additional fields to store information about its associ-
ated object or data structure. These fields could be a physical extension of a pointer, or a shadow variable.
The second approach [12] maintains an index structure that keeps track of the mapping between high-level
objects and their address ranges, and dynamically searches this index structure with a memory reference’s
target address to identify the reference’s associated object. The first approach performs much faster than
the second, but at the expense of compatibility of legacy binary code that does not support bound checking.
The second subproblem accounts for most of the bound checking overhead, and indeed most of the research
efforts in the literature were focused on how to cut down the performance cost of address-bound compar-
ison, through techniques such as redundancy elimination or parallel execution. At the highest compiler
optimization level, the minimum number of instructions required in BCC [4], a GCC-derived array bound
checking compiler, to check a reference in a C-like program against its lower and upper bounds is 6, two
to load the bounds, two comparisons, and two conditional branches. In programs that involve many array
references, this bound checking overhead could lead to serious performance penalty, even in the presence
of various software optimizations. In this paper, we propose a new approach, calledCash1, which exploits
the segmentation support in the virtual memory hardware of Intel’s X86 architecture [10] to perform array
bound checkingwithout any per-reference overhead. A segment in the X86 architecture can be of arbitrary
size, ranging from a single byte to an entire address space. To provide inter-segment protection, X86’s vir-
tual memory hardware compares every memory reference with its associated segment’s base address and
limit, thus essentially checking it against the segment’s lower and upper bounds. Recognizing the similarity
between segment bound check and array bound check,Cashallocates a separate segment to each array, and
generates the array reference instructions in such a way that the X86 architecture’s segment bound check-
ing hardware effectively performs the required array bound check for free. When array bound checking is
done through segmentation hardware, there is noper-reference overhead. However, in some cases hardware
bound checking is not possible, andCashfalls back to traditional software bound checking. Therefore, the
overhead ofCashmainly comes from additional segments set-up required for hardware bound checking,
and occasional software-based bound checking.

The general bound checking problem requires checking for each memory reference, including references
to a field within a C-like structure. However, because the X86 architecture only supports a fixed number
of segments (8192), allocating a segment to each object may quickly exhaust all the available segments. In
addition, becauseCashincurs a per-object set-up overhead, checking against bounds of non-array objects

1Checking Array bounds using Segmentation Hardware

may actually slow down the programs even more than the software approach. For these reasons, the current
Cashprototype focuses only on bound checking for array-like references inside a loop, i.e., those of the
form A[i], A++, ++A, A--, or --A , whereA could be a pointer to a static array or a dynamically
allocated buffer. For example, if a dynamic buffer is allocated through amalloc() call of the following
form

X = (* TYPE) malloc(N * sizeof(TYPE))

whereN is larger than1, thenCashtakes X as a pointer into an array ofN elements, andCashwill check the
references based on X if these references are used inside a loop. Because all known buffer overflow attacks
take place in a loop context, focusing only on array-like references that are in a loop does not compromise
Cash’s protection strength.

The rest of this paper is organized as follows. Section 2 reviews previous work on array bound checking
and contrastsCashwith these efforts. Section 3 describes the detailed design decisions of theCashcompiler
and their rationale. Section 4 presents a performance evaluation of theCashcompiler based on a set of array-
intensive programs, and a discussion of various performance overheads associated with theCashapproach.
Section 5 concludes this paper with a summary of the main research ideas and a brief outline of the on-going
improvements to theCashprototype.

2 Related Work

Most previous array bound checking research focused on the minimization of run-time performance over-
head. One notable exception is the work from the Imperial College group [12], which chose to attack the
reference/objection association problem in the presence of legacy library routines. The general approach
towards optimizing array bound checking overhead is to eliminate unnecessary checks, so that the number
of checks is reduced. Gupta [15,16] proposed a flow analysis technique that avoids redundant bound checks
in such a way that it still guaranteed to identify any array bound violation in the input programs, although it
does not necessarily detect these violations immediately after they occur at run time. By trading detection
immediacy for reduced overhead, this approach is able to hoist some of the bound checking code outside the
loop and thus reduce the performance cost of array bound checking significantly. Asuru [11] and Kolte and
Wolfe [13] extended this work with more detailed analysis to further reduce the range check overhead.

Concurrent array bound checking [6] first derives from a given program a reduce version that contains
all the array references and their associated bound checking code, and then runs the derived version and the
original version on separate processors in parallel. With the aid of a separate processor, this approach is able
to achieve the lowest array bound checking overhead reported until the arrival ofCash.

Unlike most other array bound checking compiler projects, the Bounds Checking GCC compiler (BCC)
checks the bounds for both array references and general pointers. Among the systems that perform both
types of bound checks, BCC shows the best software-only bound checking performance. However, BCC
only checks the upper bound of an array when the array is accessed directly through the array variable
(not pointer variable) whileCashautomatically checks both the upper and lower bounds. Since theCash
compiler is based on BCC, it can also check the bounds for general pointers.

The array bound checking problem for Java presents new design constraints. Because bound checking
code cannot be directly expressed at bytecode level, elimination of bound checks can only be performed at
run time, after the bytecode program is loaded. Directly applying existing array bound checking optimizers

31:24
Base

23:16
Base

19:16
Limit

15:00
Base

GDT/LDT

DPLP

15:00
Limit

Descriptor Format Page Table Entry Format

U W P

Address
Physical

 Two−Level
Page Table

Page Frame Address

PLTI

Segment Selector Offset

Virtual Address

Linear
Address

Figure 1:Memory translation process in the X86 architecture’s virtual memory hardware

at run time is not feasible, however, because they are too expensive for dynamic compilation. ABCD [17] is
a light-weight algorithm for elimination of Array Bounds Checks on Demand, which adds a few edges to the
SSA data flow graph and performs a simple traversal of the resulting graph. Despite its simplicity, ABCD
has been proven quite effective. Xi and Pfenning [7,8] developed a type-based approach to eliminating array
bound checking and list tag checking by conservatively extending Standard ML with a restricted form of
dependent types. This enables the programmer to capture more invariants through types while type-checking
remains decidable in theory and can still be performed efficiently in practice.

Electric Fence [1] is a malloc debugger for Unix like system, which can only bound check the dynamic
buffers. It places an inaccessible memory page immediately after or before each memory region allocated.
When program reads or writes these inaccessible pages, virtual memory hardware issues a segmentation
fault, stopping the program at the offending instruction. Although this method has zero overhead to perform
array bound checking, it consumes too much virtual memory space, which could lead to excessive page
faults and cache misses.

Intel X86 architecture includes abound instruction [9] for array bound checking. However, the bound
instruction is not widely used because on 80486 and Pentium processors, thebound instruction is slower
than the six normal equivalent instructions. Thebound instruction requires 7 cycles on a 1.1 GHz P3 ma-
chine while the 6 equivalent instructions require 6 cycles. Although the segmentation hardware feature has
existed since the 386 days, this architectural feature was never exploited by the operating systems or the
compiler writers. A conspicuous exception is the Palladium system [19], which exploits segmentation hard-
ware for intra-address space protection, which achieves the lowest inter-protection domain control transfer
overhead that has ever been reported in the literature. Glen Pearson described a programming technique
for programmers to exploit segmentation hardware in a way similar toCashto add array bound checking
to DOS applications [5]. Glen Pearson replaced the Turbo C malloc library with his own library, which
allocates a new segment for each dynamically allocated buffer. However, this method cannot deal with the
arrays not allocated through malloc since it requires the modification of the compiler. According to our
best knowledge,Cashis the only C compiler that utilizes the segmentation hardware to optimize the bound
checking of both static and dynamic allocated arrays.

3 The Cash Approach

3.1 Segmentation-Based Virtual Memory Support in the X86 Architecture

Before describing the detailed design of theCashcompiler, let’s briefly review the X86 architecture’s vir-
tual memory hardware. Intel X86 architecture’s virtual memory hardware supports both variable-length
segments and fixed-sized pages, as shown in Figure 1. A virtual address consists of a 16-bitsegment selec-
tor, which resides in one of the six on-chip segment registers, and a 32-bitoffset, which is given byEIP
register for instruction references,ESPregister for stack operations, or other registers/operands in the case
of data references. The segment selector contains a 13-bit index into theGlobal Descriptor Table(GDT) or
the current process’sLocal Descriptor Table(LDT). The choice between GDT and LDT is determined by a
TI bit in the segment selector. Each process has its own LDT whereas the GDT is shared among processes.
The number of entries in each LDT and the GDT is 8192. The GDT or LDT entry indexed by the segment
selector contains asegment descriptor, which, among other things, includes the base and limit addresses of
the segment, the segment’s descriptor privilege level (DPL), and read/write protection bits. The 32-bit offset
is added to the associated segment’s start address to form a 32-bitlinear address. The most significant 20
bits of a linear address are a virtual memory page number and are used to index into a two-level page table
to identify the corresponding physical page’s base address, to which the remaining 12 bits are added to form
the final physical address. The page size is 4 Kbytes.

The first entry of the GDT is not used by the X86 architecture. A segment selector that points to this
entry of the GDT (that is, a segment selector with an index of 0 and the TI flag set to 0) is used as a null
segment selector. The processor does not generate an exception when a segment register (other than the
code and stack segment registers) is loaded with a null selector. It does, however, generate an exception
when a segment register holding a null selector is used to access memory. A null selector can be used to
initialize unused segment registers, so that use of segment registers that have not been properly initialized
could be caught at run time. Loading the code or stack segment register with a null segment selector causes
a general-protection exception to be generated. A LDT is itself a segment whose segment descriptor is in
the GDT. If there are multiple LDTs, each must have a separate segment selector and segment descriptor
in the GDT. To eliminate address translation overhead when accessing an LDT, the segment selector, base
address, limit, and access rights of the LDT are stored in the LDTR register.

Intel X86 architecture provides protection checks at both segment and page levels. When a linear address
is formed, the hardware checks whether it is within the corresponding segment’s range as specified in the
segment descriptor’s base and limit. That is, the segment limit check checks both the upper and lower bounds
of a segment. In addition to checking segment limits, the processor also checks descriptor table limits. The
GDTR and LDTR registers contain 16-bit limit values that the processor uses to prevent programs from
selecting a segment descriptor outside the GDT and LDT, respectively. In addition, these two registers also
contain the base addresses of the GDT and the LDT, which are used to compute the addresses of target GDT
or LDT entries. In addition to limit check, there are standard protection mechanisms based on segment or
page privilege levels: program execution based on code residing at a less privileged level cannot access data
segments or jump to code segments that are at a more privileged level.

Every segment register has a visible part and a hidden part. The hidden part is sometimes referred to as
a descriptor cache or a shadow register. When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the base address, segment
limit, and access control information from the segment descriptor pointed to by the segment selector. The

information cached in the segment register (visible and hidden) allows the processor to translate addresses
without taking extra bus cycles to read the base address and limit from the segment descriptor. In systems
in which multiple processors have access to the same descriptor tables, it is the responsibility of software
to reload the segment registers when the descriptor tables are modified. If this is not done, an old segment
descriptor cached in a segment register might be used after its memory-resident version has been modified.
The MOVinstruction can be used to load a segment register as well as store the visible part of a segment
register into a general-purpose register.

3.2 Mapping from References to Objects

To check whether a memory reference exceeds its bound, one needs to determine the high-level data structure
or object with which the reference is associated.Cashsolves this reference-object association problem by
using a shadow pointer approach. Each pointer variableP is augmented with another pointerPA to an
information data structure about the object to whichP points. P andPA thus form a new structure on
its own. which is still pointed byP . Both P and itsPA are copied in all pointer assignment/arithmetic
operations, including binding of formal and actual pointer arguments in function calls. BecauseP andPA

are guaranteed to be adjacent to each other, theCashcompiler can easily identify the high-level object with
which a memory reference is associated by following the pointer variable used to generate the reference’s
effective address. Here we are assuming that each array reference is of the form of a base address plus
an offset, and the location following the variable holding the base address contains the array’s information
structure.

The information structure to whichPA points contains three words, the lower and upper bounds of the
object’s address range, and the LDT index associated with the segment allocated to the object. Although
it is possible to retrieve the base and limit of an object using the associated segment’s LDT index,Cash
maintains the object’s base and limit explicitly in the per-object information structure because it reduces the
memory access overhead of software-based bound checks. The three-word per-object information structure
of an array is allocated when the array is created. For example, when a 100-byte array is statically allocated,
Cashallocates 112 bytes, with the first three words dedicated to this array’s information structure. The same
thing happens when an array is allocated throughmalloc() .

3.3 Array Access Code Generation

To exploit X86’s segment limit check hardware, one needs to generate instructions for array references so
that the implicit segment limit check that occurs in each memory access does exactly what array bound
checking requires. This involves two operations. First, every time an array is used,Cashneeds to allocate
a segment register for the array, and initializes the segment register with the array’s associated segment
selector. Because both operations are loop independent, no additional instructions are required inside a loop
containing the array references. Second, the offset of each array reference needs to be recomputed using the
start of the array as the basis. The following shows the assembly code for an example C statement involving
array references,A[i] =10 , where A is a pointer to an array.

Without Array Bound Check

movl -60(%ebp), %eax ; load i

leal 0(, %eax, 4), %edx ; i * 4
movl -56(%ebp), %eax ; load a
movl $10, (%edx, %eax) ; mem[a+4*i] = 10

Checking Array Bound using Cash

movl -60(%ebp), %eax ; # load i
leal 0(, %eax, 4), %edx ; i * 4
movl -56(%ebp), %eax ; # load a
movw -52(%ebp), %ecx ; # load a’s shadow

; structure ptr
movw 0(%ecx), %gs ; load GS
subl 4(%ecx), %eax ; compute offset
movl $10, %gs:(%edx,%eax); check bounds and mem[a+4*i]=10

If the A[i] = 10 statement is inside a loop, then a standard optimization compiler can move the three
instructions in theCashversion that are marked with# outside the loop. Because a single segment register
loading instruction takes 4 cycles, it is essential that segment register loading is done outside the outermost
loop. Consequently, the bound checking inCashreally does not incur any extra software overhead per array
reference as compared with the version without array bound check.

3.4 Segment Allocation and Deallocation

In Cash, when an array is created, the associated segment is also allocated. Similarly, when an array is freed,
the associated segment is deallocated. If an array is allocated statically (global array), theCashcompiler
inserts code into the beginning of the program to perform segment initialization, which includes allocating a
segment, setting up the segment’s LDT entry, and filling in the segment’s three-word information structure
accordingly. Each local array in a function requires a separate segment initialization step inserted into the
function prologue, and a segment clean-up step into the function epilogue. For dynamically allocated arrays,
themalloc() andfree() routines are modified to include the segment initialization and clean-up steps,
respectively.Cashdoes not change the way that GCC allocates memory for global or local variables. A
segment is created on the top of the original memory region of an array variable. The segment base is the
beginning address of the array, and the limit is the size of the array.

In a 16-bit segment selector, only 13 bits of them are used as an index into the LDT. Therefore, at most
8192 segments can exist in a program. Excluding the first entry, which is used to store a call gate, there are
only 8191 segments left for array bound checking. In case there are more than 8191 objects that need to
co-exist simultaneously in a program, theCashcompiler assigns a global segment to those objects for which
no free segments are available, essentially disabling the array bound checking for these objects. The global
segment is the original application data segment created by the Linux kernel. An alternative approach to this
problem is to allocate multiple LDTs per process, and dynamically change the LDTR to point to a particular
LDT to at run time. However, modifying the LDTR requires a system call, and may lead to thrashing in the
form of LDT switching.

Lower Bound
Array

Upper Bound
Array

4KB 4KB 4KB 4KB4KB

Segment LimitSegment Base

Uncertainty in
Lower Bound Check

Figure 2: The lower bound check of Cashis not 100% strict when the segment allocated for an array is
larger than 1 Mbytes. The uncertainty is as large as 1 page or 4Kbytes.

3.5 Segment Size Consideration

The limit field of a segment descriptor is 20 bits wide. To support large segments, the X86 architecture
includes agranularity bit in the segment descriptor, which, when turned on, scales the unit of the segment
size by a factor of212. That is, when thegranularity bit is off, the segment size ranges from1 to 220 bytes
or 1 Mbytes. However, when thegranularity bit is set, the segment size ranges from212 or 4Kbytes to232

or 4Gbytes. Therefore, to support large arrays, thegranularitybit needs to be turned on.
However, when thegranularity bit is turned on, the X86 architecture’s segment limit check will ignore

the least significant 12 bits of the offset part of a virtual address. Consequently the bound checking may
no longer be 100% strict. To address this problem, for an array whose size is larger than 1 Mbytes, the
Cashcompiler always allocates a segment whose size is the minimum multiple of 4Kbytes that is larger
than or equal to the target array’s size. In addition,Cashaligns the end of the target array with the end of
the allocated segment. With this set up, the segment limit check hardware performs the upper array bound
check correctly, i.e., down to individual bytes, but the lower array bound check may be off by at most one
page. Figure 2 illustrates how this technique provides an upper bound check for large arrays whose size
is larger than 1 Mbytes. In the ideal case, if there are no other data structures that are allocated from the
portion of the first page of such a segment that does not belong to the associated array, then the deficiency in
lower bound check practically does no harm. However, the currentCashcompiler is built in such a way that
it layers segments on top of arrays that are already allocated by the underlying compiler (in this case GCC),
and therefore does not have any control over data structure placement in the address space.

In practice, this lack of strict lower bound check does not impose any security risk, because (1) all
known buffer overflow attacks overflow an array/buffer through the upper bound, and (2) with additional
compiler support the area between the array’s lower bound and the lowest page’s boundary could be forced
to be unused, and therefore cannot contain anything useful to be corrupted. Moreover, applications rarely
use arrays larger than 1 Mbytes in practice. None of the 18 applications we tested use arrays whose size is
larger than 1 Mbytes.

3.6 OS Support

To allocate a segment for an array, a segment descriptor must be inserted into the LDT table. However,
because the per-process LDT is in the kernel space, modifying the LDT requires a system call. If a function
contains local arrays, this means that calling such a function requires a system call for each of its local arrays
to set up the array’s associated segment. The system callmodify ldt() of the Linux OS is used to add
or remove an entry from the LDT. This system call on a 1.1 GHz PIII machine requires 781 clock cycles.

This is obviously an unacceptable overhead. Our original solution was to move the LDT to the user address
space. However, moving LDT to the user space creates a security problem, because the LDT is also used to
store call gates that attackers can exploit to access the kernel space. Therefore, we eventually still keep the
LDT inside the kernel, and develop several optimizations to reduce the overhead of LDT modification to the
minimum.

The first optimization is a low-overhead system call mechanism to modify the LDT inside the kernel.
On the X86 architecture, there are at least two ways for user applications to access the kernel code, through
the int instruction or a call gate using thelcall instruction. Linux 2.4 kernel uses theint 0x80
instruction to implement system calls.Cashintroduces a new system callset ldt callgate(void)
to set up a call gate that points to a new kernel function calledcash modify ldt() , which modifies
the LDT. When an application compiled byCash is executed, it first calls this system call to install the
call gate in the first entry of the LDT, and subsequently uses thelcall $0x7, $0x0 instruction to call
cash modify ldt() for LDT modification. Unlike a normal Linux system call, which saves all registers
at the beginning and restores them before the system call returns,cash modify ldt only saves the EDX
and the DS register. All parameters are passed to this function through registers to eliminate the overhead of
copying the parameters from the user stack to the kernel stack. As a result,cash modify ldt only takes
253 clock cycles whilemodify ldt system call takes 781 clock cycles.

The second optimization is to perform LDT entry allocation and de-allocation in user space. Each
application keeps afree ldt entry list in user space to maintain all free LDT entries. When a segment
is freed, a user application does not need to go into the kernel to modify the LDT, it only puts the segment’s
LDT entry number back to thisfree ldt entry list, and the LDT entry can be reused next time for a
new segment.

In many cases, a function containing local array references is used inside a loop. Each time the function
is called, it needs to allocate one LDT entry for each local array. To avoid redundant modification to the
LDT in these cases,Cashkeeps a 3-entry cache to store the three most recently freed segments. When a
new segment is needed and its base and limit match one of three segments in the cache,Cashsimply reuses
the matched free segment and avoids the overhead of going into the kernel to modify the LDT. Since freeing
a segment never modifies the LDT,Cashcan safely reuse the matched entry. This optimization dramatically
reduces the frequency of LDT modification for functions that contain local arrays and are called many times
inside loops.

3.7 Segment Register Allocation

To reduce address translation time and coding complexity, the X86 architecture provides six segment regis-
ters to hold segment selectors. To access a segment requires the corresponding segment selector to be loaded
into one of the segment registers. That is, although a program can define up to 8192 segments, only six of
them are available for immediate use. Three of these six segment registers, CS, SS, and DS, are are reserved
for code, stack, or data references, respectively. The three other segment registers, ES, FS, and GS, are
available for loading additional segments. The currentCashprototype only uses ES, FS, and GS segment
registers for array bound checking. Our experiments indicate that three segment registers are sufficient for
most network applications.Cashallocates segment registers on a first-come-first-serve basis. The first three
arrays theCashcompiler encounters during the parsing phase inside a (possibly nested) loop are assigned
one of the three segment registers. If more than three arrays are involved within a loop,Cashfalls back to
software array bound checking for references associated with those arrays beyond the first three.

If a segment register is used for array bound checking in a function, the current value of that segment
register must be saved at the function entry and then restored before the function returns. For example, ES is
used by string instructions, which currently only hand-crafted assembly code use. Therefore, to free ES, all
GLIBC string functions, which are written in assembly code, are manually modified so that the current ES
value is saved at the function entry, ES is loaded with the same value as DS, and the saved value is restored at
the function exit. Similarly if a function uses a segment register,Cashinserts code in the function prologue
to save the current value, and restore it back at the function epilogue.

With more segment registers, it is less likely thatCashinvokes software bound checking, and the per-
formance overhead can be reduced further. We have successfully used 4 segment registers (ES, FS, GS,
and SS) on a set of simple numerical kernel programs, and the resulting performance, which is reported
in Section 4.2, is indeed better. Linux initializes the SS segment register with the same value as the DS
register. It is therefore tempting to consolidate them into one segment register. However, the DS register is
used in data reference and therefore cannot be used for other purposes. The SS register, on the other hand,
is used only in PUSH/POP instructions, and it is the default segment register for EBP and ESP registers. To
use SS in array bound checking,Cashreplaces PUSH/POP instructions with normal MOVE and SUB/ADD
instructions, and substitutes the DS segment register for the SS register in each instruction involving the
EBP/ESP register. From our experiments, replacing PUSH/POP with MOVE and SUB/ADD does not seem
to incur any performance penalty. As an example, for the following C function,

void foo(int a, int b)
{

int c = a+b;
printf("%d\n",c);

}

we can generate a code sequence that does away with PUSH/POP instructions, and forces all instructions
involving EBP/ESP to use DS rather than SS, as follows:

ORIGINAL MODIFIED
foo:
1 pushl %ebp 1a subl $4, %esp

1b movl %ebp, %ds:(%esp)
2 movl %esp, %ebp 2a movl %esp, %ebp
3 subl $8, %esp 3a subl $8, %esp
4 movl 12(%ebp), %eax 4a movl %ds:12(%ebp), %eax
5 addl 8(%ebp), %eax 5a addl %ds:8(%ebp), %eax
6 movl %eax, -4(%ebp) 6a movl %eax, %ds:-4(%ebp)
7 subl $8, %esp 7a subl $8, %esp
8 pushl -4(%ebp) 8a subl $4, %esp

8b movl %ds:-4(%ebp), %ecx
8c movl %ecx,%ds:(%esp)

9 pushl $.LC0 9a subl $4, %esp
9b movl $.LC0,%ds:(%esp)

10 call printf 10a call printf

11 addl $16, %esp 11a addl $16, %esp
12 leave 12a leave
13 ret 13a ret

While it is possible to free SS as described above, it involves significant change to the compiler’s code
generator. Therefore the currentCashprototype still uses three segment registers by default.

Since all existing operating systems assume a flat address space model, CS, DS, and SS registers are
initialized with the same segment selector, and therefore contain redundant information. It is therefore
tempting to consolidate them into one segment register. However, the CS register cannot be eliminated
because the instruction fetch process uses the contents of the CS register; the DS register is used in every
data references and therefore cannot be used for other purposes, either. The SS register, on the other hand,
is used only inPUSHandPOPinstructions, and can be made available for array bound checking if theCash
compiler replacesPUSHandPOPwith the normalMOVEinstruction. In summary, theCashcompiler has up
to four segment registers at its disposal for simultaneous use. If more than four arrays are involved within a
loop, theCashcompiler resorts to software array bound checking for all arrays beyond the fourth array.

3.8 Security Consideration

Applications compiled by BCC are more secure thanCashapplications since BCC bound-checks all point-
ers. However, the high performance overhead associated with BCC applications prevents them being used in
production mode. The weakness ofCashis thatCashdoes not check pointers and array references outside
loops. However, almost all known attacks that exploit bound violation vulnerability involve array references
inside loops. Further, the low overhead ofCashmakes it more likely to be used in real world. Currently
Cashbound-checks both read and write operations since it is designed for the purposes of both security and
debugging. IfCashis used for security only,Cashdoes not need to bound-check read operations and thus
can further decrease the performance overhead by reducing the number of segment register required and and
the number of software bound checks.

In Cash, thefree ldt entry list could be corrupted due to a program bug because it is in user space.
However, the worst damage as a result of this corruption is to crash the application itself, but will not affect
other processes or the OS because the LDT table is not shared among processes. The descriptors of the
per-process code, data, stack segments are stored in the GDT, and therefore will not be affected by LDT
modification. Our own experiences confirmed that the LDT entries never get modified under Linux by any
code other thanCash. Finally, the kernel functioncash modify ldt guarantees that no call gate and
privilege segment can be created in the LDT.

3.9 Miscellaneous Issues

One of the major limitations of theCashcompiler is that it does not work with the binary code of legacy
libraries, because of the use of multi-word pointer representation. However, this limitation is shared by all
known array bound checking compilers except the work from Kelly and Jones [12]. The only solution to
this problem is to re-compile the commonly used library functions. However, many functions in GLIBC
are implemented in assembly code. To correctly pass parameters into and get the results back from these
functions, we manually insert assembly macros into these functions to calculate parameter address and

to do bound checking. All system call stubs in GLIBC are modified since system calls only take one-
word pointers. With these modifications, theCashprototype is able to compile the modified GLIBC2.2.2
successfully

Cashchooses not to allocate a separate segment for each scalar variable to conserve segments. For the
statement likep = &a wherep is an integer pointer, anda is an integer scalar variable,Cashassociatesp
to the global segment, essentially turning off bound checking forp. As a result,Cashdoes not bound-check
array pointers resulting from type casting of another pointer. For example, after the statementq = (char
*) p , wherep is an integer pointer andq is a character pointer,Cashcould have treatedq as an array
pointer. However, becauseCashdoes not bound-checkp, copyingp’s shadow information structure toq’s
shadow information structure also disables bound checking forq. While this is a limitation, we believe this
should not pose real problems in practice because such type casting is rarely used.

A common misconception aboutCashis that it requires alias analysis.Cashdoes not need to know
which pointers point to which objects statically, because it simply generates code to pass the object bound
and reference information around as part of the pointer arithmetic and assignment operations, without con-
cerning the pointer values.

BecauseCashonly adds a segment layer on top of an otherwise flat address space, and does not modify
the internals of malloc,Cashdoes not introduce any additional fragmentation beyond what exists in the
original malloc. InCash, there will not be any unused space within a segment because a segment can start
and end at arbitrary byte boundaries.

Program HW/SW GCC Cash BCC
Name Checks

SVDPACKC 403/0 5291993K 1.8% 120.0%
Vol. Render. 45/0 425029K 3.3% 126.4%

2D FFT 13/0 25870K 3.9% 72.2%
Gaus. Elim. 45/0 46961K 1.6% 92.4%

Matrix Multi. 14/0 62861K 1.5% 143.8%
Edge Detect 137/0 806514K 2.2% 83.8%

Table 1: The performance comparison among GCC, BCC, and Cashbased on a set of kernels that use
array references extensively. The matrix used in SVDPACKC (singular value decomposition) is 374x82,
the data set used in the Vol. Render. (Volume Renderer) is 128x128x128 and the image plane’s resolution
is 256x256, the resolution of the 2D images used in the 2D FFT run is 64x64, the matrix used in Gaus.
Elim. (Gaussian Elimination) and Matrix Multi. (Matrix Multiplication) is 128x128, the resolution of the
2D image used in Edge Detect (Image Edge Detection) is 1024x768. All performance measurements are in
terms of thousands of CPU cycles. The numbers inside the parentheses represent additional execution time
due to array bound checking in percentage with respect to GCC.

4 Performance Evaluation

4.1 Prototype Implementation

The currentCashcompiler prototype is derived from the Bounds Checking GCC [4], which is derived from
GCC 2.96 version, and runs on Red Hat Linux 7.2. We chose BCC as the base case for the two reasons.
BCC is one of the most advanced array bound checking compilers available to us, boasting a consistent
performance penalty of around 100%. It has been heavily optimized. The more recent bound checking
performance study from University of Georgia [2] also reports that the average performance overhead of
BCC for a set of numerical kernels is around 117% on Pentium III. In contrast, all the research results
published in the literature on C-based array bound checkingalwaysdid far worse than BCC. Moreover, the
fact that BCC and Cash are based on the same GCC code basis makes the comparison more meaningful.
Existing commercial products such as Purify are not very competitive. Purify is a factor of 5-7 slower than
the unchecked version because it needs to perform check on every read and write. The VMS compiler and
Alpha compiler also supported array bound checking, but both are at least twice as slow compared with the
unchecked case on the average. In all the following measurements, the compiler optimization level of both
BCC andCashis set to the highest level. All test programs are statically linked with all required libraries,
which are also recompiled withCash.

Instead of a 3-word pointer representation in BCC,Cashuses a 2-word pointer representation, with an
additional 3-word shadow information structure. This change is motivated by the observation that pointer
variable manipulation may result in substantial memory copying overhead when pointer size is increased
by a factor of three. Moreover, rather than checking bound violation for every array reference via software,
Cashperforms these checks mostly through the segment limit checking hardware supported on the X86
architecture. To move the per-process LDT from the kernel address space to the user address space,Cash
introduces a new system call to the Linux operating system, which is called in the beginning of a bound-
checked program to modify the LDTR to point to a table allocated in the user address space.

To understand the quantitatively results of the experiments run on theCashprototype presented in the
next subsection, let’s first analyze qualitatively the performance savings and overheads associated with the
Cashapproach.

Compared with BCC,Cash’s bound checking mechanism does not incur any software overhead, because
it exploits segment limit check hardware to perform array bound checks for free. However, there are other
overheads that exist only inCashbut not in BCC. First, there is aper-program overhead, which results from
the set-up of the call gate and the segment free list. Then there is aper-array overhead, which is related
to segment allocation and deallocation. Finally there is aper-array-use overhead, which is due to segment
register loading whenever an array is to be used. Because an array may be used at different points of program
execution, each use may incur a segment register loading overhead if its corresponding segment selector is
not loaded into any of the available segment registers. On a Pentium-III 1.1-GHz machine running Red Hat
Linux 7.2, the measuredper-program overheadis 543 cycles, theper-array overheadis 263 cycles, and the
per-array-use overheadis 4 cycles.

4.2 Micro-Benchmark Results

To study the array bound checking overhead associated withCash, we first choose a set of six numerical
kernels that use array references extensively, and the performance results in thousands of CPU cycles are

shown in Table 1. We compareCashagainst the vanilla GCC without bound checking and the bound-
checking version of GCC (BCC). The former sets the baseline performance, whereas the latter represents a
state-of-the-art fully operational software-only bound checking compiler. SVDPACKC is a C-based singular
value decomposition package that implements Lanczos and subspace iteration-based methods for determin-
ing several of the largest singular triplets (singular values and corresponding left- and right-singular vectors)
for large sparse matrices. The Volume Rendering program implements a ray casting algorithm for 3D vol-
umetric data sets. The 2D FFT, Gaussian Elimination, Matrix Multiplication, and Image Edge Detection
programs are based on standard algorithms. These programs represent the best case for BCC because they
use pointers rarely, and they are more amenable to advanced compiler optimizations.

We instrumented theCashcompiler to measure the number of bound checks statically inserted into the
applications when BCC is in use, and how may of them are eliminated by theCashcompiler and replaced
with hardware checks. The second column of Table 1 shows the number of hardware bound checks and
software bound checks of each program. In this experiment,Cashis able to use four segment registers. As
a result,all software bound checks are eliminated in each of the six test programs. In terms of execution
time, the performance overhead of theCashcompiler is always within 4% of that of GCC, for all six test
programs. In contrast, BCC is between 1.7 to 2.4 times slower than GCC. Although BCC’s performance is
already quite good compared with results reported in the literature, it is still significantly slower thanCash.

However, if there are only 2 segment registers available, only in Volume Rendering, 2D FFT, and Gaus-
sian Elimination can all software bound checks be eliminated. For SVDPACKC, Matrix Multiplication,
and Image Edge Detection, the percentages of software bound checks that can be eliminated are 50.1%
(202/201), 85.7% (12/2), and 19.7% (27/110), respectively. Accordingly, their overall performance over-
heads become 35.7%, 1.5%, and 44.2%, respectively. The reason why software bound checks are needed
in these programs is that the programs access more than two arrays at a time and references to those arrays
for which no segment register can be assigned have to be bound-checked through software. As expected,
the higher the percentage of array references that are bound-checked through software, the largerCash’s
performance overhead.

Program Name GCC Cash BCC
SVDPACKC 421,076 29.9% 127.1%

Volume Rendering 379,316 30.1% 124.2%
2D FFT 393,332 28.6% 135.9%

Gaussian 364,788 29.8% 125.6%
Matrix 363,540 29.9% 145.2%

Image Edge 375,348 30.4% 146.5%

Table 2:The binary code size comparison among GCC, BCC, and Cashfor the test suite. GCC numbers are
in bytes and numbers for Cashand BCC are in terms of percentage increases with respect to GCC. Programs
are compiled with static linking.

There are two reasons why the binary size of a program with bound checking is larger than one without
bound checking. First, the bound checking instructions take additional space. Second, pointer representation
require multiple words. BCC incurs both overheads, whereasCashonly needs to bear the second cost. Table
2 shows that the code size overhead of the applications compiled by theCashcompiler is within 31% of that
of GCC, whereas BCC’s code is more than 120%.

Program Name 64 128 256 512
2D FFT 3.9% 1.5% 0.1% 0.001%

Gaussian 5.7% 1.6% 1.7% 0.3%
Matrix 2.2% 1.5% 1.4% 0.1%

Table 3:The relative performance cost of Cashwith respect to GCC for 2D FFT, Gaussian Elimination, and
Matrix Multiplication decreases as the input matrix size increases. 64 stands for 64x64 matrix, 128 stands
for 128x128 matrix, etc.

An important property of theCashapproach is that its absolute (not relative) overhead is independent of
the size of the data set that the application programs are manipulating, if all software array bound checks are
replaced with hardware checks. Therefore, the relative overhead ofCashcompared to GCC should decrease
as the data set size increases. Table 3 shows that the relatively performance cost ofCashcompared with
the vanilla GCC in general decreases as the matrix size increases. However, the trend is not absolutely
monotonic because large inputs cause higher cache miss ratio and thus complicate the relative performance
cost calculation. However, this general trend reflects that the performance overhead ofCash is indeed
independent of the data set size and thus is more scalable than software bound checkers.

Program Name Lines of Code Brief Description Array-Using Loops > 3 Arrays
Toast 7372 GSM audio compression utility 51 6 (0.6%)
Cjpeg 33717 JPEG compression utility 236 38 (1.5%)
Quat 15093 3D fractal generator 117 19 (3.4%)

RayLab 9275 Raytracer-based 3D renderer 69 4 (0.2%)
Speex 16267 Voice coder/decoder 220 23 (2.8%)

Gif2png 47057 Gif to PNG converter 277 9 (1.3%)

Table 4:Characteristics of a set of large applications used for the macro-benchmarking study. The source
code line count includes all the libraries used in the programs, excluding libc .

Program Name GCC Cash BCC
Toast 4,727,612K 4.6% 47.1%
Cjpeg 229,186K 8.5% 84.5%
Quat 9,990,571K 15.8% 238.3%

RayLab 3,304,059K 4.5% 40.6%
Speex 35,885,117K 13.3% 156.4%

Gif2png 706,949K 7.7% 130.4%

Table 5: The performance comparison among GCC, BCC, and Cashbased on a set of macro-benchmark
programs. GCC numbers are in thousands of CPU cycles, whereas performance penalty of Cashand BCC
are in terms of execution time percentage increases with respect to GCC.

4.3 Macro-Benchmark Results

We also compare the performance of GCC, BCC, andCashusing a set of large applications, whose charac-
teristics are listed in Table 4, and the results are shown in Table 5. In general, the performance difference
betweenCashand BCC is smaller compared with the results in Table 1 because the total cost of array bound
checking is relatively less significant when the original program size is large. However, even for these ap-
plications, the performance overhead difference between BCC andCashis still quite substantial. As for
binary code size, the results for the macro-benchmark suite, shown in Table 6, are similar to that for the
micro-benchmark suite.

Program Name GCC Cash BCC
Toast 476,600 61.8% 123.5%
Cjpeg 476,376 52.5% 130.9%
Quat 523,096 58.9% 151.2%

RayLab 501,048 35.8% 130.8%
Speex 530,584 30.6% 136.9%

Gif2png 516,664 35.8% 136.6%

Table 6: The binary code size comparison among GCC, BCC, and Cashfor the macro-benchmark suite.
GCC numbers are in bytes and numbers for Cashand BCC are in terms of percentage increases with respect
to GCC. Programs are compiled with static linking.

A major concern early in theCashproject is that the number of segment registers (currently 3) is so
small as to cause frequent fall-back to software bound check. BecauseCashonly checks array references
within loops, a small number of segment registers is a problem only when the body of a loop uses more than
3 arrays/buffers. That is, the limit on the number of simultaneous array uses is per loop, not per function, or
even per program. To isolate the performance cost associated with this problem, we measure the number of
loops that involve array references, and the number of loops that involve more than 3 distinct arrays (called
spilled loops) during the execution of the micro-benchmark programs. The results are presented in Table 4,
which show that the majority of array-referencing loops in these programs use fewer than 5 arrays. The
percentage numbers within the parenthesis provide the percentage of loop iterations that are executed in the
experiments and that belong to spilled loops. However, the fact that some loops do use more than 3 distinct
arrays simultaneously suggests that these programs need to incur software bound checking overhead, and
is another reason why the performance overhead ofCashis higher for the macro-benchmark suite than the
micro-benchmark suite.

4.4 Network Applications

Because one of the applications of bound checking is to stop remote attacks that that exploit buffer overflow
vulnerability, we applyCashto a set of popular network applications that are known to have such a vulner-
ability. The list of applications and their characteristics are shown in Table 7. At the time of writing this
paper, BCC still cannot correctly compile these network applications. because of a BCC bug [4] in thenss
(name-service switch) library, which is needed by all network applications. Because of this bug, the bounds-
checking code BCC generates will cause spurious bounds violations innss parse service list ,

Program Lines of Array-Using > 3
Name Code Loops Arrays

Qpopper-4.0 32104 67 1 (0.9%)
Apache-1.3.20 51974 355 12 (0.5%)

Sendmail-8.11.3 73612 217 24 (1.4%)
Wu-ftpd-2.6.1 28055 138 1 (0.4%)

Pure-ftpd-1.0.16b 22693 45 1 (0.5%)
Bind-8.3.4 46844 734 22 (0.6%)

Table 7: Characteristics of a set of popular network applications that are known to have buffer overflow
vulnerability. The source code line count includes all the libraries used in the programs, excluding libc .

which is used internally by the GNU C library’s name-service switch. Therefore, for network applications,
we only compare the results fromCashand GCC.

Program Latency Throughput Space
Name Penalty Penalty Overhead

Qpopper 6.5% 6.1% 60.1%
Apache 3.3% 3.2% 56.3%

Sendmail 9.8% 8.9% 44.8%
Wu-ftpd 2.5% 2.4% 68.3%
Pure-ftpd 3.3% 3.2% 63.4%

Bind 4.4% 4.3% 53.6%

Table 8: The latency/throughput penalty and space overhead of each network application compiled under
Cashwhen compared with the baseline case without bound checking.

To evaluate the performance of network applications, we used two client machines (one 300-MHz
Pentium-2 with 128MB memory and the other 1.5-GHz Pentium-4 with 256 MB memory), that continu-
ously send 2000 requests to a server machine (1.1-GHZ Pentium-3 with 512 MB memory) over a 100Mbps
Ethernet link. The server machine’s kernel was modified to record the creation and termination time of each
forked process. The throughput of a network application running on the server machine is calculated by
dividing 2000 with the time interval between creation of the first forked process and termination of the last
forked process. The latency is calculated by taking the average of the CPU time used by the 2000 forked
processes. The Apache web server program is handled separately in this study. We configured Apache to
handle each incoming request with a single child process so that we could accurately measure the latency of
each Web request.

We measured the latency of the most common operation for each of these network applications when
the bound checking mechanism inCashis turned on and turned off. The operation measured is sending a
mail for Sendmail, retrieving a web page for Apache, getting a file for Wu-ftpd, answering a DNS query for
Bind, and retrieving mails for Qpopper. For network applications that can potentially involve disk access,
such as Apache, we warmed up the applications with a few runs before taking the 10 measurements used
in computing the average. The latency penalty for these applications ranges from 2.5% (Wu-ftpd) to 9.8%
(Sendmail), and the throughput penalty ranges from 2.4% (Wu-ftpd) to 8.9% (Sendmail), as shown in Ta-
ble 8. In general, these numbers are consistent with the results from micro-benchmarking, and demonstrate

that Cash is indeed a highly efficient bound checking mechanism that is applicable to a wide variety of
applications. The space overhead results in Table 8 are higher than those in Table 2.

A major concern early in theCashproject is that the number of segment registers (currently 3) is so
small as to cause frequent fall-back to software bound check. BecauseCashonly checks array references
within loops, a small number of segment registers is a problem only when the body of a loop uses more than
3 arrays/buffers. That is, the limit on the number of simultaneous array uses is per loop, not per function, or
even per program. To isolate the performance cost associated with this problem, we measure the number of
loops that involve array references, and the number of loops that involve more than 3 distinct arrays (called
spilled loops) during the execution of these network applications, and the results are shown in Table 7. The
percentage numbers within the parenthesis provide the percentage of loop iterations that are executed in the
experiments and that belong to spilled loops. The percentage of static loops in each application that use
more than 3 arrays is below 3.5% for all applications except Sendmail, which is at 11%. Unsurprisingly,
Sendmail also carries the highest latency and throughput penalty.

4.5 Other Performance Factors

Another potential issue is the number of segments needed in an entire application, because the total number
of segments available is 8191. Our results show that the total number of segments used is within 10 segments
for the micro-benchmark applications, 163 segments for the macro-benchmark, and 292 for the network
applications. Therefore, the budget, 8191, seems more than sufficient for many applications. Another hidden
performance cost is increased pointer variable copying overhead due to multi-word pointer representation.
Because BCC uses a 3-word representation, its cost in pointer copying is even higher thanCash, which uses
a 2-word representation. However, for most numerical programs that require array bound checking, pointer
assignments are never sufficiently frequent to cause noticeable performance problems.

One major concern is the overhead associated with LDT modification. Among all 18 tested applications,
Toast makes the most requests (415,659 calls) to allocate segments. 223,781 of them (or 53.8% hit ratio) can
find a matched segment in the 3-entry cache and 191,878 requests actually need to go into the kernel through
the cash modify ldt call gate to modify the LDT. Each call gate invocation takes 253 cycles, which
means that it takes 50,464K cycles for the 191,878 calls, and this is relatively insignificant as compared with
Toast’s total run time (4,727,612K cycles). Therefore, the overhead of the Toast application compiled under
Cashis still very small (4.6%) though it makes so many segment allocation requests.

5 Conclusion

Although array bound checking is an old problem, it has seen revived interest recently out of concerns
on security breaches exploiting array bound violation. Despite its robustness advantage, most real-world
programs do not incorporate array bound checking, and the main hurdle is its performance cost. Whereas
almost all previous research in this area focused on static analysis techniques to reduce redundant bound
checks and thus minimize the checking overhead, this work took a completely different approach that relies
on hardware features available in the X86 architecture, which accounts for more than 90% of the worldwide
PC market. The main idea of our approach is to organize array reference instructions in such a way that
the segment limit check mechanism in the X86 architecture’s virtual memory hardware effectively performs
array bound check. As a result, the proposed approach, calledCash, does not incur any per-array-reference

overhead most of the time, because bound checking is done by the segmentation hardware for free. However,
there are per-program overhead, per-array overhead, and per-array-use overhead associated with theCash
approach. We have successfully built aCashprototype based on the bound-checking GCC compiler under
Red Hat Linux 7.2. The currentCashprototype can check bounds for array pointers as well as general
pointers. The empirical performance measurements from running a set of numerical kernels that use array
references extensively on theCashprototype demonstrate that theCashapproach can reduce the array bound
checking overhead of a set of popular network applications to under 9.8% compared with the baseline case
that does not perform any bound checking.

As for the performance difference betweenCashand BCC, it has more to do with the fact that it has
to perform software array bound checks for references inside loops, and less to do with the fact that it also
needs to check references outside the loops. After all, most of the computation time of the test applications
is spent on loops. In fact, the micro-benchmark results from Table 1, where the test applications contain only
loops, show that BCC actually performs even worse thanCashwhen there are no non-loop array references.

Although theCashapproach reduces the array bound checking overhead to an unprecedentedly low
level, it relies on a specific hardware feature of the X86 architecture, and thus is not as portable as other
software-only approaches. We recognize this limitation. However, we believe that the X86 architecture has
a long life time ahead, especially in view of the recent announcement that Intel is planning to develop a
64-bit version of its X86 architecture that will evolve in parallel with its Itanium line.

Acknowledgment

This research is supported by NSF awards SCI-0401777, CNS-0410694 and CNS-0435373 and Rether
Networks Inc.

References
[1] Bruce Perens. Electric fence: a malloc() debugger for linux and unix.http://perens.com/FreeSoftware/.

[2] Chris Bentley, Scott A. Watterson, and David K. Lowenthal. A comparison of array bounds checking on superscalar and vliw
architectures.submitted to the annual IEEE Workshop on Workload Characterization, September 2002.

[3] Crispan Cowan, et al. Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks. InProc. 7th
USENIX Security Conference, pages 63–78, San Antonio, Texas, Jan 1998.

[4] GCC. Bounds-checking gcc.http://www.gnu.org/software/gcc/projects /bp/main.html.

[5] Glenn Pearson. Array bounds checking with turbo c.Dr. Dobb’s Journal of Software Tools, 16(5):72, 74, 78–79, 81–82,
104–107, May 1991.

[6] Harish Patil and Charles N. Fischer. Efficient run-time monitoring using shadow processing. InProceedings of Automated
and Algorithmic Debugging Workshop, pages 119–132, 1995.

[7] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types.SIGPLAN Conference on
Programming Language Design and Implementation, pages 249–257, 1998.

[8] Hongwei Xi and Songtao Xia. Towards array bound check elimination in java virtual machine language. InProceedings of
CASCON ’99, pages 110–125, Mississauga, Ontario, November 1999.

[9] Intel. IA-32 Intel Architecture Software Developer’s Manual Volume 2: Instruction Set Reference.
http://www.intel.com/design/Pentium4/manuals/.

[10] Intel. Ia-32 intel architecture software developer’s manual. volume 3: System programming guide.
http://developer.intel.com/design/pentium4/manuals/245472.htm.

[11] J. M. Asuru. Optimization of array subscript range checks.ACM letters on Programming Languages and Systems, 1(2):109–
118, June 1992.

[12] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds checking for arrays and pointers in c programs. In
Proceedings of Automated and Algorithmic Debugging Workshop, pages 13–26, 1997.

[13] P. Kolte and M. Wolfe. Elimination of redundant array subscript range checks.SIGPLAN Conference on Programming
Language Design and Implementation, pages 270–278, 1995.

[14] Manish Prasad and Tzi-cker Chiueh. A binary rewriting approach to stack-based buffer overflow attacks. Inin Proceedings
of 2003 USENIX Conference, June 2003.

[15] Rajiv Gupta. A fresh look at optimizing array bound checking.SIGPLAN Conference on Programming Language Design
and Implementation, pages 272–282, 1990.

[16] Rajiv Gupta. Optimizing array bound checks using flow analysis.ACM Letters on Programming Languages and Systems,
2(1-4):135–150, March-December 1993.

[17] Rastislav Bodik and Rajiv Gupta and Vivek Sarkar. Abcd: eliminating array bounds checks on demand.SIGPLAN Conference
on Programming Language Design and Implementation, pages 321–333, 2000.

[18] Tzi-cker Chiueh and Fu-Hau Hsu. Rad: A compiler time solution to buffer overflow attacks. Inin Proceedings of International
Conference on Distributed Computing Systems (ICDCS), Phoenix, Arizona, April 2001.

[19] Tzi-cker Chiueh and Ganesh Venkitachalam and Prashant Pradhan. Integrating segmentation and paging protection for safe,
efficient and transparent software extensions. Inin Proceedings of 17th ACM Symposium on Operating Systems Principles,
Charleston, SC, December 1999.

